If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-9)(2x-5)+(x-7)(2x+4)-(3x^2+13x-8)=0
We get rid of parentheses
-3x^2+(x-9)(2x-5)+(x-7)(2x+4)-13x+8=0
We multiply parentheses ..
-3x^2+(+2x^2-5x-18x+45)+(x-7)(2x+4)-13x+8=0
We add all the numbers together, and all the variables
-3x^2+(+2x^2-5x-18x+45)-13x+(x-7)(2x+4)+8=0
We get rid of parentheses
-3x^2+2x^2-5x-18x-13x+(x-7)(2x+4)+45+8=0
We multiply parentheses ..
-3x^2+2x^2+(+2x^2+4x-14x-28)-5x-18x-13x+45+8=0
We add all the numbers together, and all the variables
-1x^2+(+2x^2+4x-14x-28)-36x+53=0
We get rid of parentheses
-1x^2+2x^2+4x-14x-36x-28+53=0
We add all the numbers together, and all the variables
x^2-46x+25=0
a = 1; b = -46; c = +25;
Δ = b2-4ac
Δ = -462-4·1·25
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-12\sqrt{14}}{2*1}=\frac{46-12\sqrt{14}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+12\sqrt{14}}{2*1}=\frac{46+12\sqrt{14}}{2} $
| 9x-2x+6x=-2+60+8 | | 16560=12x2+4x-8 | | 16560=12x2+ | | 9x-2+2x=60+6x+8 | | x+5/7=4-x+6/2 | | 2x-5x-x+7x=18 | | K-p=7 | | 4x–3=x-7 | | O.02r+0.01=0.15r^2 | | -3(-8u+7)-4u=2(u-9)-5 | | x-525=600 | | -7.5b-3b=29.5 | | x/(1/7)=-4/7 | | 3(2x=+1)/5=2x-5 | | Y=55x+300 | | 12x^2+30x-252=0 | | P^2-3p+6=0 | | 1/5y^2+3/10y-2=0 | | 2x=+9=27 | | -27.5=-3+8(s-3.5) | | 2a-5=9+7 | | .5=(x-330)/x | | |2x+1/3|=1 | | 5x+2x+5=19 | | x^2+2x+4=2x^2+4x+1 | | 14+3y=-26 | | 39-5x=4x | | 4+x=0.16x+3.2 | | -8+4x=-12-7x | | 2x^2-50=50 | | 25x-3x=5x-15 | | r/8+7=9 |